Thursday, February 28, 2019

Textual description of firstImageUrl

Grundumsatz – Wikipedia


Der Grundumsatz, auch Ruheenergiebedarf, oft auch Ruheenergieverbrauch, Ruheenergieumsatz, Grundenergieumsatz, Grundbedarf oder basale Stoffwechselrate, ist die Energiebedarf pro Zeiteinheit, der zur Aufrechterhaltung der Homöostase notwendig ist. Physikalisch betrachtet ist der Begriff „Ruheenergieverbrauch“ falsch, da Energie nicht verbraucht werden kann. Daher sind die korrekten Bezeichnungen Ruheenergiebedarf, Ruheenergieumsatz und Grundenergieumsatz vorzuziehen.

Grundlegende Funktionen sind in diesem Zusammenhang etwa Atmung, Blutkreislauf, Thermoregulation oder Verdauung. Energie, die für körperliche Aktivität oder starkes Schwitzen benötigt wird, ist im Grundumsatz nicht enthalten. Physikalisch gesehen handelt es sich beim Grundumsatz um eine Leistung, deren SI-Einheit das Watt ist. In der Praxis allerdings wird statt mit der gesetzlichen Einheit Joule häufig weiter mit der älteren Einheit Kalorien (gemeint sind damit meist Kilokalorien) gerechnet und der Grundumsatz – da er sich stets auf einen ganzen Tag, also 24 Stunden bezieht – dementsprechend in Kilokalorien pro 24 Stunden (kcal/24 h) angegeben (wobei auch der Bezug „/24 h“ oft noch einmal weggelassen wird). In der angelsächsischen Fachliteratur wird der Begriff resting energy expenditure (REE) für den Ruheenergieverbrauch verwendet.

Die wissenschaftliche Literatur formuliert den Grundumsatz zunehmend mit der SI-Einheit Megajoule pro Tag (MJ/d) (Beispiel: Journal of Nutrition). Die Lebensmittel-Informationsverordnung schreibt im Warenverkehr der EU zudem die Angabe des physiologischen Brennwerts in der Einheit kJ/100 g vor, so dass über die Mengenbilanz auch die Energiebilanz von Lebensmitteln im Internationalen Einheitensystem (SI) berechnet werden kann. Für die Umrechnung zwischen Kilojoule und Kilokalorie gibt es – je nach Definition der Standardbedingungen – geringfügig unterschiedliche Faktoren. Die 9. Generalkonferenz für Maße und Gewichte hat 1948 folgenden Umrechnungsfaktor festgelegt:


und .

Faktoren, die den Grundumsatz beeinflussen, sind u. a.: Alter, Geschlecht, Körpergewicht, Körpergröße, Muskelmasse, Wärmedämmung durch Kleidung sowie der Gesundheitszustand (z. B. bei erhöhter Körpertemperatur durch Fieber o. Ä.).





Der Ruheenergiebedarf ist der Anteil am täglichen Energiebedarf eines Organismus, der für die Aufrechterhaltung der Homöostase notwendig ist. Dazu gehören unter anderem die Thermoregulation, die mechanische Arbeit von Herz und Lunge, das Wachstum des Organismus, das Membranpotenzial, der Substratstoffwechsel, der Energiebedarf des Gehirns. Beim Menschen macht der Ruheenergiebedarf etwa 50 bis 75 % des gesamten Energiebedarfes (Total Energy Expenditure, TEE) aus. Hinzu kommen – individuell verschieden – noch 15 bis 40 % aktivitätsabhängiger Energiebedarf und bis zu 10 % nahrungsinduzierte Thermogenese (NIT). Der aktivitätsabhängige Energiebedarf variiert je nach beruflicher Belastung (non-exercise activity thermogenesis NEAT)[1][2] und Freizeitaktivität (= Sport, exercise activity thermogenesis, EAT). Die nahrungsinduzierte Thermogenese ist der für die Metabolisierung der zugeführten Nährstoffe notwendige Energiebedarf.[3]



Der Ruheenergiebedarf lässt sich mit verschiedenen Methoden bestimmen. Die am häufigsten angewandte Methode ist die indirekte Kalorimetrie. Bei diesem Verfahren wird in der ausgeatmeten Luft die Sauerstoff- und Kohlenstoffdioxid-Konzentration gemessen. Über die Menge des abgegebenen Kohlenstoffdioxids lässt sich der Energieumsatz ermitteln.[4]
Nach einer Formel von Harris und Benedict[5] lässt sich der Ruheenergiebedarf auch berechnen. Dabei gehen die Parameter Geschlecht, Körpergewicht, Körperlänge und Alter in die Formel ein.[6]



Der Gesamtenergiebedarf von bettlägerigen Kranken liegt meist nur geringfügig, im Bereich von 0 bis 7 %, über dem Ruheenergiebedarf.[7][8][9][10][11]

Der zusätzliche, über dem normalen Ruheenergiebedarf liegende, Energiebedarf ist allerdings stark von der Erkrankung abhängig. Nach Operationen beträgt die Zunahme beispielsweise etwa 28 %, bei einer Verletzung oder Sepsis um 26 %, bei Krebs um 18 % und bei Atemwegserkrankungen um 9 %.[12]



Indirekte Kalorimetrie im Labor mit einer Canopy-Haube (Verdünnungsmethode)

Durch Methoden der Kalorimetrie lässt sich der Grundumsatz direkt über die abgegebene Wärmemenge oder indirekt über den Sauerstoffverbrauch messen, was aber für den Alltag außerhalb wissenschaftlicher Forschung, beispielsweise in Krankenhäusern, zu aufwendig ist.

Die direkte Kalorimetrie wurde schon im 18. Jahrhundert von Antoine Laurent de Lavoisier entwickelt, hat inzwischen jedoch nur noch historische Bedeutung. Stattdessen wird heute in der medizinischen Praxis mit Spirometern der Atemstrom des Probanden gemessen und daraus das Volumen der Atemluft, der Sauerstoffverbrauch und aus beidem schließlich der Grundumsatz selbst ermittelt.[13]



Harris-Benedict-Formel[Bearbeiten | Quelltext bearbeiten]


Grundumsatz in kCal pro Tag für Männer nach Harris-Benedict und BMI-Formeln, über Alter und Gewicht für einen BMI von 21,5

Grundumsatz in kCal pro Tag für Frauen nach Harris-Benedict und BMI-Formeln, über Alter und Gewicht für einen BMI von 21,5

Im Jahre 1918 veröffentlichten J. A. Harris und F. G. Benedict die nach ihnen benannte Harris-Benedict-Formel, in die die Körpermasse , die Körpergröße und das Alter als Einflussfaktoren des Grundumsatzes eingehen.[14]

Die Formel stellt noch heute eine in der Ernährungsmedizin allgemein akzeptierte gute Näherung des gemessenen Grundumsatzes dar. Sie lautet für Männer:



und für Frauen



In gesetzlichen Einheiten, die zum Ergebnis in der SI-Einheit kJ pro Tag führen, lauten die Formeln
für Männer:



und für Frauen:



Der auffällige Unterschied des ersten Summanden um fast eine Zehnerpotenz bringt zum Ausdruck, dass der Grundumsatz bei Männern stärker von der Körperstatur und der davon abhängigen Muskelmasse bestimmt wird.


Broca-Index-Anpassung[Bearbeiten | Quelltext bearbeiten]


Da mit steigendem Körperfettanteil der Grundumsatz pro Kilogramm Körpergewicht abnimmt, sollte hauptsächlich ab einem BMI von 30 kg/m² in die o. g. Formeln ein korrigiertes Körpergewicht eingesetzt werden, das sich unter Berücksichtigung des Normalgewichtes nach Paul Broca wie folgt berechnet:



Eine Vereinfachung ergibt sich, wenn beide Formeln zusammengefasst werden. Man erhält dabei den korrigierten Grundumsatz ohne dass ein korrigiertes Körpergewicht eingesetzt werden muss.

Die Formel lautet für Männer



und für Frauen



In gesetzlichen Einheiten, die zum Ergebnis in der SI-Einheit kJ pro Tag führen, lauten die Formeln für Männer:



und für Frauen



Außer für die Berechnung des korrigierten Grundumsatzes spielt das Normalgewicht nach Broca heutzutage praktisch keine Rolle mehr und ist zur Beurteilung von Übergewicht und Adipositas durch den Body-Mass-Index, sowie verschiedene andere körperliche Parameter abgelöst worden.


Mifflin-St.Jeor-Formel[Bearbeiten | Quelltext bearbeiten]


Grundumsatz in kCal pro Tag für Männer und Frauen nach Mifflin-St.Jeor und BMI-Formeln, über Alter und Gewicht für einen BMI von 21,5

Eine neuere Formel wurde 1990 von Mifflin und St.Jeor vorgeschlagen,[15] welche den Lebensstiländerungen der letzten 100 Jahre Rechnung tragen soll und im Mittel ungefähr 5 % akkurater ist (Masse in kg, Größe in cm, Alter in Jahren, Grundumsatz in kcal pro Tag).[16]



mit für Männer und für Frauen.

In gesetzlichen Einheiten, die zum Ergebnis in kJ pro Tag führen, lautet die Formel:



mit für Männer und für Frauen.


Einfache Abschätzung[Bearbeiten | Quelltext bearbeiten]


Stark vereinfacht, doch immer noch alltagstauglich, ist die Näherungsannahme, dass der Mensch pro Kilogramm Körpergewicht unter den genannten Bedingungen 25 kcal pro Tag verbraucht. Daraus leitet sich folgende vereinfachte Formel ab:



Da sowohl ein Tag 24 Stunden besitzt als auch 100 kJ etwa 24 kcal entsprechen, wird in zahlreichen Publikationen eine noch einfachere Faustformel mit dem Faktor 24 verwendet. So ergibt sich aus dem hundertfachen des Gewichtes der Grundumsatz eines Tages in Kilojoule und aus dem Gewicht selbst der Grundumsatz pro Stunde in kcal. Nach dieser Faustformel berechnet sich der tägliche Grundumsatz für einen Mann wie folgt:



Da Männer durchschnittlich etwas größer sind und im Verhältnis zum Körpergewicht sowohl mehr Muskelmasse als auch weniger Körperfett als Frauen besitzen, wird pauschal von einem um 10 % geringeren Grundumsatz bei Frauen ausgegangen:



Daraus ergeben sich für einen Menschen mit einem Gewicht von 70 kg etwa folgende Werte:





Mit erhöhter körperlicher Aktivität steigt auch der Energieumsatz. Die dadurch pro Tag zusätzlich umgesetzte Energiemenge wird Leistungsumsatz genannt. Der gesamte Energieumsatz ist die Summe aus Grund- und Leistungsumsatz. Er lässt sich abschätzen, indem man den zuvor bestimmten Grundumsatz mit einem Aktivitätsfaktor (PAL-Wert, engl. physical activity level) multipliziert. Dieser beträgt zwischen 1,2 im Liegen oder Sitzen und bis zu 2,4 bei schwerer körperlicher Arbeit, z. B. in der Schwerindustrie oder im Leistungssport. Bei Büroarbeit dagegen kommt man lediglich auf einen Aktivitätsfaktor von 1,3 bis 1,6.

Im Krankheitsfall wird der Grundumsatz zur Ermittlung des tatsächlichen Energiebedarfs außer mit dem Aktivitätsfaktor (der bei bettlägerigen Patienten 1,2, und bei mobilisierten Patienten 1,3 beträgt) auch noch mit einem Traumafaktor multipliziert, der durch die Schwere der Krankheit bestimmt wird und zwischen 1,0 und 1,6 beträgt.



Den größten Anteil am Grundumsatz im menschlichen Körper haben Leber und Skelettmuskulatur mit je etwa 26 %, gefolgt vom Gehirn mit 18 %, dem Herz mit 9 % und den Nieren mit 7 %. Die restlichen 14 % entfallen auf die übrigen Organe.[17]








  1. J. A. Levine und C. M. Kotz: NEAT (non-exercise activity thermogenesis) egocentric and geocentric environmental factors vs. biological regulation. In: Acta Physiol Scand 184, 2005, S. 309–318. PMID 16026422 (Review)

  2. J. A. Levine: Non-exercise activity thermogenesis (NEAT). In: Best Pract Res Clin Endocrinol Metab 16, 2002, S. 679–702. PMID 12468415 (Review)

  3. Erwin-Josef Speckmann: Physiologie. Urban & Fischer Verlag, ISBN 3-437-41318-X, S. 588–596.

  4. M. J. Müller u. a.: Schätzung und Messung des Energieverbrauchs: Methoden und Stellenwert in der klinischen Diagnostik. In: Intensivmed 29, 1992, S. 411–426.

  5. J. A. Harris und F. G. Benedict: Publication No 279A biometric study of basal metabolism in man. In: Carnegie Institution of Washington 1919

  6. Universität Düsseldorf: Leitlinie Parenterale Ernährung Kapitel 3 - Energieumsatz und Energiezufuhr. nach Akt Ernähr Med 32, 2007, S.  8–12. doi:10.1055/s-2006-951862 eingesehen am 13. September 2016

  7. W. Behrendt u. a.: How reliable are short-term measurements of oxygen uptake in polytraumatized and long-term ventilated patients? In: Infusionsther Transfusionsmed 18, 1991, S. 20–24. PMID 2030048

  8. D. C. Frankenfield u. a.: Relationships between resting and total energy expenditure in injured and septic patients. In: Crit Care Med 22, 1994, S. 1796–1804. PMID 7956284

  9. N. A. Smyrnios u. a.: Accuracy of 30-minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated, critically ill patients. In: JPEN 21, 1997, S. 168–174. PMID 9168370

  10. D. L. Swinamer u. a.: Twenty-four hour energy expenditure in critically ill patients. In: Crit Care Med 15, 1987, S. 637–643. PMID 3595152

  11. C. Weissman, M. Kemper, D. H. Elwyn, J. Askanazi, A. I. Hyman, J. M. Kinney: The energy expenditure of the mechanically ventilated critically ill patient. An analysis. In: Chest. Band 89, Nummer 2, Februar 1986, S. 254–259, PMID 3943386.

  12. J. M. Miles: Energy expenditure in hospitalized patients: implications for nutritional support. In: Mayo Clinic Proceedings. Band 81, Nummer 6, Juni 2006, S. 809–816, doi:10.4065/81.6.809, PMID 16770981.

  13. Horst de Marées: Sportphysiologie S. 381ff Köln 2003. ISBN 3-939390-00-3

  14. Harris J, Benedict F: A Biometric Study of Human Basal Metabolism. In: Proc Sci U S a. 4, Nr. 12, 1918, S. 370–3. doi:10.1073/pnas.4.12.370. PMID 16576330. PMC 1091498 (freier Volltext).

  15. Mifflin, St Jeor et al: A new predictive equation for resting energy expenditure in healthy individuals. In: American Journal of Clinical Nutrition. 51, Nr. 2, Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Nonobese and Obese Adults: A Systematic Review, S. 241–247. PMID 2305711.

  16. David Frankenfield et al: Comparison of Predictive Equations for Resting Metabolic Rate in Healthy Nonobese and Obese Adults: A Systematic Review. In: Journal of the American Dietetic Association. 105, Nr. 5, May 2005, S. 775-789. doi:10.1016/j.jada.2005.02.005.

  17. Robert F. Schmidt, Florian Lang, Manfred Heckmann: Physiologie des Menschen. mit Pathophysiologie. 31. Auflage. SpringerMedizin Verlag, Heidelberg 2010, ISBN 978-3-642-01650-9, S. 838.







No comments:

Post a Comment